Imperial College London

Science and Technology Facilities Council

Stawarz et al. (submitted) *JGR* Preprint: <u>10.1002/essoar.10503618.1</u> j.stawarz@imperial.ac.uk

Using the Magnetospheric Multiscale Mission to Examine Electric Fields in Turbulent Plasmas

Julia E. Stawarz¹, L. Matteini¹, T. N. Parashar², L. Franci³, J. P. Eastwood¹, C. A. Gonzalez⁴, I. L. Gingell⁵, D. J. Gershman⁶, and the MMS Team ¹Imperial College London, ²Victoria University of Wellington, ³Queen Mary University of London, ⁴University of Texas at Austin, ⁵University of Southampton, ⁶Goddard Spaceflight Center

Key Points

- Using NASA's Magnetospheric Multiscale, we examine in detail how generalised Ohm's Law shapes the turbulent electric field for the first time
- Results provide insight into the interplay between the Hall and electron pressure terms, which is important for understanding turbulent dissipation
- Ohm's Law allows a direct examination of the relative importance of linear and nonlinear dynamics

Turbulence is a fundamental process for particle energization in plasmas throughout the Universe, from the solar wind and planetary magnetospheres to accretion discs and galaxy clusters

Turbulence is charaterised by **highly-nonlinear fluctuations across a wide range of length scales** (Fig 1)

Many space plasmas are collisionless, resulting in a variety of possible mechanisms for dissipating the fluctuation energy

Disentangling these dissipation mechanisms is a major open problem in plasma turbulence research

Analyzing Electric Fields in Collisionless Plasmas

Since magnetic fields (*B*) do no work, electric fields (*E*) are required to exchange energy between *B* and the particles $\rightarrow E$ is key to understanding both turbulent dissipation and the nonlinear dynamics

In collisionless plasmas, *E* is governed by a **generalised Ohm's Law** in which the different terms correspond to different dynamical processes (**Fig. 2**)

NASA's **Magnetospheric Multiscale (MMS)** mission consists of 4 closely spaced satellites, providing 3D, high-time-resolution, multipoint plasma measurements (**Fig. 3**)

MMS is uniquely capable of directly probing nearly all the terms in Ohm's Law down to length scales approaching those of electron motions [e.g. <u>Torbert+ (2016) *GRL*</u>]

How do the terms in Ohm's Law behave as a function of scale?

Three intervals of MMS data from Earth's magnetosheath are analysed [Results from one interval are shown here as an example]

Timeseries of each Ohm's Law term are computed and then the power spectra are compared to the power spectrum of the directly measured E (**Fig. 4**)

Frequencies are converted to wavenumbers using the average flow velocity $\rightarrow k = 2\pi f/U_0$

Results

Good agreement between measured E and E_{Ohm}

 E_{MHD} provides dominant contribution at large scales, indicating **B** is frozen-in to ion fluid flows

 E_{Hall} makes largest contribution at sub-ion scales \rightarrow scale of transition typically occurs near

 $kd_{i} \sim \frac{\delta u_{rms}}{\delta b_{rms}/\sqrt{\mu_{0}m_{i}n}}$

 E_{P_e} provides non-zero contribution to sub-ion scale electric field

 $E_{inertia}$ and $E_{\delta m_e}$ are negligible across observed scales, as expected [Only the spatial gradient portions were computable from data]

Hall and Electron Pressure Terms

Interplay between E_{Hall} and E_{P_e} important because E_{P_e} can provided a *non-ideal* electric field that can energise electrons and contribute to dissipation

 E_{Hall} dominates over E_{P_e} , but E_{P_e} is stronger than expected from typical kinetic Alfvén wave predictions (**Fig. 5a**) [Boldyrev+ (2013) ApJ] \rightarrow magnetic reconnection may lead to excess E_{P_e} [Stawarz+ (2019) ApJL]

Partial anti-alignment between E_{Hall} and E_{P_e} fluctuations at sub-ion scales (**Fig. 5b**) \rightarrow degree of alignment linked to relative importance of ion and electron dynamics in supporting sub-ion scale currents

Linear & Nonlinear Terms

 $\boldsymbol{E}_{MHD} = -\delta \boldsymbol{u} \times \boldsymbol{B}_0 - \delta \boldsymbol{u} \times \delta \boldsymbol{b} \qquad \boldsymbol{E}_{Hall} = \delta \boldsymbol{j} \times \boldsymbol{B}_0 / en + \delta \boldsymbol{j} \times \delta \boldsymbol{b} / en$

In E_{MHD} (Fig. 6a), nonlinear to linear term ratio increases at sub-ion scales \rightarrow caused by decrease in alignment of δu and δb at sub-ion scales [consistent with Parashar+ (2018) PRL]

In E_{Hall} (Fig. 6b), ratio of nonlinear to linear terms is ~ $\delta b_{rms}/B_0$ at all scales

Results suggest a balance of linear and nonlinear timescales at both MHD and sub-ion scales that is set by $\delta b_{rms}/B_0$